Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We discuss the model of astrophysical emission at millimeter wavelengths used to characterize foregrounds in the multi-frequency power spectra of the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6), expanding on Louis et al. (2025) (2503.14452). We detail several tests to validate the capability of the DR6 parametric foreground model to describe current observations and complex simulations, and show that cosmological parameter constraints are robust against model extensions and variations. We demonstrate consistency of the model with pre-DR6 ACT data and observations fromPlanckand the South Pole Telescope. We evaluate the implications of using different foreground templates and extending the model with new components and/or free parameters. In all scenarios, the DR6 ΛCDM and ΛCDM+Neffcosmological parameters shift by less than 0.5σrelative to the baseline constraints. Some foreground parameters shift more; we estimate their systematic uncertainties associated with modeling choices. From our constraint on the kinematic Sunyaev-Zel'dovich power, we obtain a conservative limit on the duration of reionization of Δzrei< 4.4, assuming a reionization midpoint consistent with optical depth measurements and a minimal low-redshift contribution, with varying assumptions for this component leading to tighter limits. Finally, we analyze realistic non-Gaussian, correlated microwave sky simulations containing Galactic and extragalactic foreground fields, built independently of the DR6 parametric foreground model. Processing these simulations through the DR6 power spectrum and likelihood pipeline, we recover the input cosmological parameters of the underlying cosmic microwave background field, a new demonstration for small-scale CMB analysis. These tests validate the robustness of the ACT DR6 foreground model and cosmological parameter constraints.more » « lessFree, publicly-accessible full text available October 1, 2026
-
ABSTRACT The interstellar medium is threaded by a hierarchy of filaments from large scales (∼100 pc) to small scales (∼0.1 pc). The masses and lengths of these nested structures may reveal important constraints for cloud formation and evolution, but it is difficult to investigate from an evolutionary perspective using single observations. In this work, we extract simulated molecular clouds from the ‘Cloud Factory’ galactic-scale ISM suite in combination with 3D Monte Carlo radiative transfer code polaris to investigate how filamentary structure evolves over time. We produce synthetic dust continuum observations in three regions with a series of snapshots and use the filfinder algorithm to identify filaments in the dust derived column density maps. When the synthetic filaments mass and length are plotted on an mass–length (M–L) plot, we see a scaling relation of L ∝ M0.45 similar to that seen in observations, and find that the filaments are thermally supercritical. Projection effects systematically affect the masses and lengths measured for the filaments, and are particularly severe in crowded regions. In the filament M–L diagram we identify three main evolutionary mechanisms: accretion, segmentation, and dispersal. In particular we find that the filaments typically evolve from smaller to larger masses in the observational M–L plane, indicating the dominant role of accretion in filament evolution. Moreover, we find a potential correlation between line mass and filament growth rate. Once filaments are actively star forming they then segment into smaller sections, or are dispersed by internal or external forces.more » « less
-
The HI-based Stokes parameter maps used in (https://arxiv.org/abs/2306.10107) Filamentary Dust Polarization and the Morphology of HI Structures, Halal et al. 2023. Use of these data must cite that paper and (https://ui.adsabs.harvard.edu/abs/2019ApJ...887..136C/abstract) Clark & Hensley 2019. There are four sets of data cubes: one at Nside=1024 based on the 4' GALFA-HI data computed using the Spherical RHT algorithm, one at Nside=2048 based on the 4' GALFA-HI data smoothed to 7' computed using the Hessian algorithm, and two at Nside=1024 based on the 16.2' HI4PI data (one computed using the Spherical RHT algorithm and the other using the Hessian algorithm). A map based on the Hessian algorithm and the 16.2' HI4PI data, integrated over the velocity range -13 km/s to 16 km/s (Section 4.1 in Halal et al. 2023), is also available. The provided data cubes can be used to produce integrated maps over any velocity range desired. <br/><br/> These maps are given in units of K km/s and follow the Galactic IAU polarization convention. Multiply U by -1 to obtain maps corresponding to the COSMO convention as those provided by Planck. Multiply both Q and U by -1 to obtain maps corresponding to the magnetic field orientation in the IAU convention. <br/><br/> Please see (https://github.com/seclark/ClarkHensley2019) for code that demonstrates the use of data of the same format. The velocity binning of this data follows that of <a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/P41KDE">Clark & Hensley 2019</a> and can be found <a href="https://github.com/seclark/ClarkHensley2019/tree/master/data">here</a>.more » « less
-
Abstract We present a cross-correlation analysis between resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inℓover the range 103<ℓ< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <ℓ≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisℓrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-ℓmeasurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.more » « less
-
Abstract Stellar streams from globular clusters (GCs) offer constraints on the nature of dark matter and have been used to explore the dark matter halo structure and substructure of our Galaxy. Detection of GC streams in other galaxies would broaden this endeavor to a cosmological context, yet no such streams have been detected to date. To enable such exploration, we develop the Hough Stream Spotter ( HSS ), and apply it to the Pan-Andromeda Archaeological Survey (PAndAS) photometric data of resolved stars in M31's stellar halo. We first demonstrate that our code can re-discover known dwarf streams in M31. We then use the HSS to blindly identify 27 linear GC stream-like structures in the PAndAS data. For each HSS GC stream candidate, we investigate the morphologies of the streams and the colors and magnitudes of all stars in the candidate streams. We find that the five most significant detections show a stronger signal along the red giant branch in color–magnitude diagrams than spurious non-stream detections. Lastly, we demonstrate that the HSS will easily detect globular cluster streams in future Nancy Grace Roman Space Telescope data of nearby galaxies. This has the potential to open up a new discovery space for GC stream studies, GC stream gap searches, and for GC stream-based constraints on the nature of dark matter.more » « less
-
Abstract We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower thanPlanckin polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scalePlanckdata, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either thePlanckpower spectra or from ACT combined withWMAPdata, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT andPlanck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ωbh2= 0.0226 ± 0.0001, a cold dark matter density of Ωch2= 0.118 ± 0.001, a Hubble constant ofH0= 68.22 ± 0.36 km/s/Mpc, a spectral index ofns= 0.974 ± 0.003, and an amplitude of density fluctuations ofσ8= 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant toH0= 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σlevel. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017–2022 and cover 19,000 square degrees with a median combined depth of 10 μK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA athttps://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html. We also provide an interactive web atlas athttps://phy-act1.princeton.edu/public/snaess/actpol/dr6/atlasand HiPS data sets in Aladin (e.g.https://alasky.cds.unistra.fr/ACT/DR4DR6/color_CMB).more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model, ΛCDM, and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from thePlanckmission. To break geometric degeneracies, we include ACT andPlanckCMB lensing data and baryon acoustic oscillation data from DESI Year-1. To test the dependence of our results on non-ACT data, we also explore combinations replacingPlanckwithWMAPand DESI with BOSS, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral indexdns/dlnk= 0.0062 ± 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (Neff= 2.86 ± 0.13, which combined with astrophysical measurements of primordial helium and deuterium abundances becomesNeff= 2.89 ± 0.11), for non-zero neutrino masses (∑mν< 0.089 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (Nidr< 0.134), or for early-universe variation of fundamental constants, including the fine-structure constant (αEM/αEM,0= 1.0043 ± 0.0017) and the electron mass (me/me,0= 1.0063 ± 0.0056). Our data are consistent with standard big bang nucleosynthesis (we findYp= 0.2312 ± 0.0092), theCOBE/FIRAS-inferred CMB temperature (we findTCMB= 2.698 ± 0.016 K), a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant (w= -0.986 ± 0.025), and the late-time growth rate predicted by general relativity (γ= 0.663 ± 0.052). We find no statistically significant preference for a departure from the baseline ΛCDM model. In fits to models invoking early dark energy, primordial magnetic fields, or an arbitrary modified recombination history, we findH0= 69.9+0.8-1.5, 69.1 ± 0.5, or 69.6 ± 1.0 km/s/Mpc, respectively; using BOSS instead of DESI BAO data reduces the central values of these constraints by 1–1.5 km/s/Mpc while only slightly increasing the error bars. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored over ΛCDM by our data.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Observing in six frequency bands from 27 to 280 GHz over a large sky area, the Simons Observatory (SO) is poised to address many questions in Galactic astrophysics in addition to its principal cosmological goals. In this work, we provide quantitative forecasts on astrophysical parameters of interest for a range of Galactic science cases. We find that SO can: constrain the frequency spectrum of polarized dust emission at a level of Δβd≲ 0.01 and thus test models of dust composition that predict thatβdin polarization differs from that measured in total intensity; measure the correlation coefficient between polarized dust and synchrotron emission with a factor of two greater precision than current constraints; exclude the nonexistence of exo-Oort clouds at roughly 2.9σif the true fraction is similar to the detection rate of giant planets; map more than 850 molecular clouds with at least 50 independent polarization measurements at 1 pc resolution; detect or place upper limits on the polarization fractions of CO(2–1) emission and anomalous microwave emission at the 0.1% level in select regions; and measure the correlation coefficient between optical starlight polarization and microwave polarized dust emission in 1° patches for all lines of sight withNH≳ 2 × 1020cm−2. The goals and forecasts outlined here provide a roadmap for other microwave polarization experiments to expand their scientific scope via Milky Way astrophysics.3737A supplement describing author contributions to this paper can be found athttps://simonsobservatory.org/wp-content/uploads/2022/02/SO_GS_Contributions.pdf.more » « less
An official website of the United States government
